By Topic

Polarimetric radar studies of atmospheric ice particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vivekanandan, J. ; Nat. Center for Atmos. Res., Boulder, CO, USA ; Bringi, V.N. ; Hagen, M. ; Meischner, P.

Single scattering properties of ice crystals are described at microwave frequencies using discrete dipole approximations and Rayleigh scattering techniques. For a given shape, the average bulk densities of ice crystals can be estimated using the ratio of the copolarized radar signal in a linear (horizontal, vertical) polarization basis. Reflectivity depends on the ice content (g×m-3), and also on both size distribution parameters and average bulk density of the scatterers. Differential propagation phase is primarily a function of shape, ice water content, and is independent of size distribution parameters. Thus, by using a combination of polarimetric radar measurements, average ice content, bulk density, and shape of distributed scatterers call be inferred. These techniques become quite complex in the case of a winter storm where scatterers can exist with varying shape and bulk densities. Polarimetric radar properties of such complex distributed scatterers are modeled. Physical variations in the relation among ice water content, reflectivity, and differential propagation phase are considered with respect to change in the shape of size distribution, bulk density,,and average shape of the scatterers. Also, simultaneous polarimetric radar observations and in situ aircraft measurements are shown to demonstrate practical applicability of the techniques

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 1 )