By Topic

Avoiding stick-slip through PD control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. E. Dupont ; Dept. of Aerosp. & Mech. Eng., Boston Univ., MA, USA

Addresses the question of how to achieve steady motion at very low velocities using proportional-derivative (PD) control. Most prior work in control has used friction models which depend only on the current value of velocity. This type of analysis indicates that stick-slip can be avoided only through velocity feedback. The tribology literature, however, indicates that friction also depends on the history of motion. By including this dependence, a second regime of stable motion is revealed which is associated with position feedback gains above a critical value. Two experimentally-based dynamic friction models are compared using a linearized stability analysis. In accord with experiment, a state variable friction model exhibits asymptotically stable motion for any system stiffness (position feedback gain) exceeding a critical value. This property is not exhibited by a time-lag friction model

Published in:

IEEE Transactions on Automatic Control  (Volume:39 ,  Issue: 5 )