By Topic

A passive protected self-healing mesh network architecture and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tsong-Ho Wu ; Bellcore, Red Bank, NJ, USA

The self-healing mesh network architecture using digital cross-connect systems (DCSs) is a crucial part of an integrated network restoration system. The conventional DCS self-healing networks using logical channel protection may require a large amount of spare capacity for network components (such as DCSs) and may not restore services fast enough (e.g., within 2 s). The authors propose a passive protected DCS self-healing network (PPDSHN) architecture using a passive protection cross-connect network for network protection. For the PPDSHN architecture, network restoration is performed in the optical domain and is controlled by electronic working DCS systems. Some case studies have suggested that the proposed PPDSHN architecture may restore services within a two-second objective with less equipment cost than the conventional DCS self-healing network architecture in high-demand metropolitan areas for local exchange carrier networks. The proposed PPDSHN architecture may apply to not only the centralized and distributed control DCS network architectures, but also asynchronous, SONET and ATM DCS networks. Transparency of line rates and transmission formats makes the PPDSHN network even more attractive when network evolution is a key concern of network planning

Published in:

Networking, IEEE/ACM Transactions on  (Volume:2 ,  Issue: 1 )