By Topic

Transient analysis of manufacturing systems performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Narahari, Y. ; Dept. of Comput. Sci. & Autom., Indian Inst. of Sci., Bangalore, India ; Viswanadham, N.

We present several situations in manufacturing systems where transient analysis is very important. Manufacturing systems and models in which such situations arise include: systems with failure states and deadlocks, unstable queueing systems, and systems with fluctuating or nonstationary workloads. Even in systems where equilibrium exists, transient analysis is important in studying issues such as accumulated performance rewards over finite intervals, first passage times, sensitivity analysis, settling time computation, and deriving the behavior of queueing models as they approach equilibrium. In this paper, we focus on transient analysis of Markovian models of manufacturing systems. After presenting several illustrative manufacturing situations where transient analysis has significance, we discuss two problems for demonstrating the importance of transient analysis. The first problem is concerned with the computation of distribution of time to absorption in Markov models of manufacturing systems with deadlocks or failures, and the second problem shows the relevance of transient analysis to a multiclass manufacturing system with significant setup times. We also discuss briefly computational aspects of transient analysis

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:10 ,  Issue: 2 )