By Topic

Three dimensional magnetic field computation by a coupled vector-scalar potential method in brushless DC motors with skewed permanent magnet mounts-the no-load and load results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. Alhamadi ; Qatar Univ., Doha, Qatar ; N. A. Demerdash

The coupled magnetic vector potential-magnetic scalar potential (CMVP-MSP) method of computation of 3D magnetic fields by finite elements (3D-FE) is applied here to a brushless DC motor with skewed permanent magnet mounts on its rotor. Results of the CMVP-MSP and 3D-FE computation of the magnetic field and associated motor parameters (EMFs and armature inductances) are detailed in this paper. These results demonstrate vividly the three dimensional nature of the computed flux distributions, caused by the torque ripple reduction design employing skewed magnet mounts on the rotor. Experimental evidence supporting the validity of the BD-FE field computations, through comparison between computed and measured armature EMF waveforms is also provided in this paper

Published in:

IEEE Transactions on Energy Conversion  (Volume:9 ,  Issue: 1 )