By Topic

Genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. F. Frenzel ; Dept. of Electr. Eng., Idaho Univ., Moscow, ID, USA

Genetic algorithms are exploratory procedures that are often able to locate near optimal solutions to complex problems. To do this, a genetic algorithm maintains a set of trial solutions, and forces them to evolve towards an acceptable solution. First, a representation for possible solutions must be developed. Then, starting with an initial random population and employing survival-of-the-fittest and exploiting old knowledge in the gene pool, each generation's ability to solve the problem should improve. This is achieved through a four-step process involving evaluation, reproduction, recombination, and mutation. As an application the author developed a genetic algorithm to train a product neural network for predicting the optimum transistor width in a CMOS switch, given the operating conditions and desired conductance.<>

Published in:

IEEE Potentials  (Volume:12 ,  Issue: 3 )