Cart (Loading....) | Create Account
Close category search window
 

Optimization of scintillation-detector timing systems using Monte Carlo analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Binkley, D.M. ; CTI Pet Syst. Inc., Knoxville, TN, USA

Monte Carlo analysis is used to model statistical noise associated with scintillation-detector photoelectron emissions and photomultiplier tube operation. Additionally, the impulse response of a photomultiplier tube, front-end amplifier, and constant-fraction discriminator (CFD) is modeled so the effects of front-end bandwidth and constant-fraction delay and fraction can be evaluated for timing-system optimizations. Such timing-system analysis is useful for detectors having low photoelectron-emission rates, including bismuth germanate (BGO) scintillation detectors used in positron emission tomography (PET) systems. Monte Carlo timing resolution for a BGO/photomultiplier scintillation detector, CFD timing system is presented as a function of constant-fraction delay for 511-keV coincident gamma rays in the presence of Compton scatter. Monte Carlo results are in good agreement with measured results when a tri-exponential BGO scintillation model is used. Monte Carlo simulation is extended to include CFD energy-discrimination performance. Monte Carlo energy-discrimination performance is experimentally verified along with timing performance (Monte Carlo timing resolution of 3.22 ns FWHM versus measured resolution of 3.30 ns FWHM) for a front-end rise time of 10 ns (10-90%), CFD delay of 8 ns, and CFD fraction of 20%

Published in:

Nuclear Science, IEEE Transactions on  (Volume:41 ,  Issue: 1 )

Date of Publication:

Feb 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.