By Topic

Digit-set conversions: generalizations and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kornerup, P. ; Dept. of Math. & Comput. Sci., Odense Univ.

The problem of digit set conversion for fixed radix is investigated for the case of converting into a non redundant, as well as into a redundant, digit set. Conversion may be from very general digit sets, and covers as special cases multiplier recodings, additions, and certain multiplications. We generalize known algorithms for conversions into non redundant digit sets, as well as apply conversion to generalize the O(log n) time algorithm for conditional sum addition using parallel prefix computation, and a comparison is made with standard carry-lookahead techniques. Examples on multi-operand addition are used to illustrate the generality of this approach. O(1) time algorithms for converting into redundant digit sets are generalized based on a very simple lemma, which provides a framework for all conversions into redundant digit sets. Applications in multiplier recoding and partial product accumulation are used as exemplifications

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 5 )