Cart (Loading....) | Create Account
Close category search window
 

Embedding of rings and meshes onto faulty hypercubes using free dimensions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pei-Ji Yang ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Tien, S.-B. ; Raghavendra, C.S.

Fault tolerance in hypercubes is achieved by exploiting inherent redundancy and executing tasks on faulty hypercubes. The authors consider tasks that require linear chain, ring, mesh, and torus structure, which are quite useful in parallel and pipeline computations. They assume the number of faults is on the order of the number of dimensions of the hypercube. The techniques are based on a key concept called free dimension, which can be used to partition a cube into subcubes such that each subcube contains, at most, one faulty node. Subgraphs are embedded in each subcube and then merged to form the entire graph

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 5 )

Date of Publication:

May 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.