By Topic

A 12-b 600 ks/s digitally self-calibrated pipelined algorithmic ADC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hae-Seung Lee ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA

This paper discusses fully digital error correction and self-calibration which correct errors due to capacitor mismatch, charge injection, and comparator offsets in algorithmic A/D converters. The calibration is performed without any additional analog circuitry, and the conversion does not need extra clock cycles. This technique can be applied to algorithmic converter configurations including pipelined, cyclic, or pipelined cyclic configurations. To demonstrate the concept, an experimental 2-stage pipelined cyclic A/D converter is implemented in a standard 1.6-μm CMOS process. The ADC operates at 600 ks/s using 45 mW of power at ±2.5 V supplies. The active die area excluding the external logic circuit is 1 mm2. Maximum DNL of ±0.6 LSB and INL of ±1 LSB at a 12-b resolution have been achieved

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 4 )