By Topic

A 700-MHz switched-capacitor analog waveform sampling circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haller, G.M. ; Linear Accel. Center, Stanford Univ., CA, USA ; Wooley, B.A.

Analog switched-capacitor memory circuits are suitable for use in a wide range of applications where analog waveforms must be captured or delayed, such as the recording of pulse echo events and pulse shapes. Analog sampling systems based on switched-capacitor techniques offer performance superior to that of flash A/D converters and charge-coupled devices with respect to cost, density, dynamic range, sampling speed, and power consumption. This paper proposes an architecture with which sampling frequencies of several hundred megahertz can be achieved using conventional CMOS technology. Issues concerning the design and implementation of an analog memory circuit based on the proposed architecture are presented. An experimental two-channel memory with 32 sampling cells in each channel has been integrated in a 2-μm CMOS technology with poly-to-poly capacitors. The measured nonlinearity of this prototype is 0.03% for a 2.5 V input range, and the memory cell gain matching is 0.01% rms. The dynamic range of the memory exceeds 12 b for a sampling frequency of 700 MHz. The power dissipation for one channel operated from a single +5 V supply is 2 mW

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 4 )