By Topic

Improved time-frequency representation of multicomponent signals using exponential kernels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. -I. Choi ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; W. J. Williams

The authors introduce a time-frequency distribution of L. Cohen's (1966) class and examines its properties. This distribution is called exponential distribution (ED) after its exponential kernel function. First, the authors interpret the ED from the spectral-density-estimation point of view. They then show how the exponential kernel controls the cross terms as represented in the generalized ambiguity function domain, and they analyze the ED for two specific types of multicomponent signals: sinusoidal signals and chirp signals. Next, they define the ED for discrete-time signals and the running windowed exponential distribution (RWED), which is computationally efficient. Finally, the authors present numerical examples of the RWED using the synthetically generated signals. It is found that the ED is very effective in diminishing the effects of cross terms while retaining most of the properties which are useful for a time-frequency distribution

Published in:

IEEE Transactions on Acoustics, Speech, and Signal Processing  (Volume:37 ,  Issue: 6 )