By Topic

Lattice algorithms for recursive least squares adaptive second-order Volterra filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Syed, M.A. ; Digicom Syst. Inc., Milpitas, CA, USA ; Mathews, V.J.

This paper presents two computationally efficient recursive least-squares (RLS) lattice algorithms for adaptive nonlinear filtering based on a truncated second-order Volterra system model. The lattice formulation transforms the nonlinear filtering problem into an equivalent multichannel, linear filtering problem and then generalizes the lattice solution to the nonlinear filtering problem. One of the algorithms is a direct extension of the conventional RLS lattice adaptive linear filtering algorithm to the nonlinear case. The other algorithm is based on the QR decomposition of the prediction error covariance matrices using orthogonal transformations. Several experiments demonstrating and comparing the properties of the two algorithms in finite and “infinite” precision environments are included in the paper. The results indicate that both the algorithms retain the fast convergence behavior of the RLS Volterra filters and are numerically stable

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:41 ,  Issue: 3 )