By Topic

Packet error probabilities in frequency-hopped spread-spectrum packet radio networks-memoryless frequency-hopping patterns considered

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Georgiopoulos, M. ; Dept. of Electr. & Commun. Sci., Central Florida Univ., Orlando, FL, USA

The packet error probability induced in a frequency-hopped spread-spectrum packet radio network is computed. The frequency spectrum is divided into q frequency bins. Each packet is exactly one codeword from an (M, L) Reed-Solomon code [M=number of codeword symbols (bytes); L=number of information symbols (bytes)]. Every user in the network sends each of the M bytes of his packet at a frequency chosen among the q frequencies with equal probability and independently of the frequencies chosen for other bytes (i.e., memoryless frequency-hopping patterns). Statistically independent frequency-hopping patterns correspond to different users in the network. Provided that K users have simultaneously transmitted their packets on the channel and a receiver has locked on to one of these K packets, the probability that this packet is not decoded correctly is evaluated. It is also shown that although memoryless frequency-hopping patterns are utilized, the byte errors at the receiver are not statistically independent; instead they exhibit a Markovian structure

Published in:

Communications, IEEE Transactions on  (Volume:36 ,  Issue: 6 )