By Topic

On the problem of local minima in recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bianchini, M. ; Dept. of Syst. & Inf., Florence Univ., Italy ; Gori, M. ; Maggini, M.

Many researchers have recently focused their efforts on devising efficient algorithms, mainly based on optimization schemes, for learning the weights of recurrent neural networks. As in the case of feedforward networks, however, these learning algorithms may get stuck in local minima during gradient descent, thus discovering sub-optimal solutions. This paper analyses the problem of optimal learning in recurrent networks by proposing conditions that guarantee local minima free error surfaces. An example is given that also shows the constructive role of the proposed theory in designing networks suitable for solving a given task. Moreover, a formal relationship between recurrent and static feedforward networks is established such that the examples of local minima for feedforward networks already known in the literature can be associated with analogous ones in recurrent networks

Published in:

Neural Networks, IEEE Transactions on  (Volume:5 ,  Issue: 2 )