Cart (Loading....) | Create Account
Close category search window
 

Application of a beamforming technique to ultrasound imaging in nondestructive testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghorayeb, S.R. ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Lord, W. ; Udpa, S.S.

Many innovations in the modern testing of materials make use of ultrasound. As a result, ultrasound has become extremely important to nondestructive testing of complete engineered systems. However, despite the fact that ultrasound inspection techniques are based on well-established principles, a few key problems pertaining to their application still remain unresolved. One of these problems deals with materials having complex geometries, often making the scanning/data collection processes time consuming. Consequently, fast and accurate mechanisms for testing components with awkward configurations have been the focus of attention in modern nondestructive testing research. In this paper, the data independent beamformer is studied as a potential method to reduce ultrasonic data acquisition time. The finite element method (FEM) is used as a testbed to mimic the ultrasound measurements by simulating the action of a transducer array. Tests reveal that when the weights of the interpolating filters (beamformers) are adjusted properly, they can indeed be used to predict A-scan signals from a data set produced by a transducer moving in a line-scan direction at nonuniform increments; hence, reducing the data acquisition time. The same filter weights also predict accurately A-scan signals from another data set produced by the same transducer moving at nonuniform increments for a different material geometry.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:41 ,  Issue: 2 )

Date of Publication:

March 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.