By Topic

Double- and triple-step incremental linear interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Graham, P. ; Louisiana State Univ., Baton Rouge, LA, USA ; Iyengar, S.S.

Incremental linear interpolation determines the set of n+1 equidistant points on an interval [a,b] where all variables involved (n, a, b, and the set of equidistant points) are integers and n>0. Our method of linear interpolation generalizes the findings of a variable-step line-drawing algorithm. The resulting interpolation algorithm has as many loops as the line-drawing algorithm, but fewer restrictions on its input variables. Furthermore, its benefits over the fixed-step interpolation algorithms are similar to those of the variable-step line-drawing algorithm. That is, the double- and triple-step interpolation algorithm can reduce the number of loop iterations of the double-step interpolation algorithm (by 12.5% on average) while keeping the code complexity, initialization costs, and worst-case performance the same. The improvement in speed over the single-step B5 algorithm is even greater.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:14 ,  Issue: 3 )