By Topic

Factors affecting errors due to 2-D approximate analysis of 3-D magnetic fields with eddy currents [rotating machines]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. Takahashi ; Dept. of Electr. Eng., Okayama Univ., Japan ; T. Nakata ; K. Fujiwara ; T. Nishimura

The effects of the leakage flux, eddy current path, and end coil of electric machines on the flux and eddy current density analyzed by the 2-D approximation are investigated systematically by making a comparison with 3-D analysis. It is shown that, when the gap length is relatively large, the difference between the fluxes calculated by 2-D and 3-D analyses is pronounced due to the leakage flux. The flux in the pole obtained by 3-D analysis is larger than that obtained by 2-D analysis under constant current excitation, and the flux obtained by 3-D analysis is less than that obtained by 2-D analysis under constant voltage excitation. When the eddy current flows in the thin core, a larger error occurs in the 2-D analysis, because there is a great difference in eddy current paths between 2-D and 3-D models

Published in:

IEEE Transactions on Magnetics  (Volume:27 ,  Issue: 6 )