We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Instruction window size trade-offs and characterization of program parallelism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dubey, P.K. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Adams, G.B. ; Flynn, M.

Detecting independent operations is a prime objective for computers that are capable of issuing and executing multiple operations simultaneously. The number of instructions that are simultaneously examined for detecting those that are independent is the scope of concurrency detection. The authors present an analytical model for predicting the performance impact of varying the scope of concurrency detection as a function of available resources, such as number of pipelines in a superscalar architecture. The model developed can show where a performance bottleneck might be: insufficient resources to exploit discovered parallelism, insufficient instruction stream parallelism, or insufficient scope of concurrency detection. The cost associated with speculative execution is examined via a set of probability distributions that characterize the inherent parallelism in the instruction stream. These results were derived using traces from a Multiflow TRACE SCHEDULING compacting FORTRAN 77 and C compilers. The experiments provide misprediction delay estimates for 11 common application-level benchmarks under scope constraints, assuming speculative, out-of-order execution and run time scheduling. The throughput prediction of the analytical model is shown to be close to the measured static throughput of the compiler output

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 4 )