By Topic

Reliable floating-point arithmetic algorithms for error-coded operands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lo, J.-C. ; Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA

Reliable floating-point arithmetic is vital for dependable computing systems. It is also important for future high-density VLSI realizations that are vulnerable to soft-errors. However, the direct checking of floating-point arithmetic is still an open problem. The author presents a set of reliable floating-point arithmetic algorithms for low-cost residue encoded and Berger encoded operands, respectively. Closed form equations are derived for floating-point addition, subtraction, multiplication, and division. Given the standard IEEE floating-point numbers, the proposed reliable floating-point multiplication algorithms for low-cost residue encoded operands are extremely low-cost: it requires less than 8% of hardware redundancy in all cases. For reliable floating-point addition and subtraction, the author finds the hardware redundancy ratios of applying low-cost residue code is about the same as that of applying Berger code: less than 40% of hardware redundancy for single precision numbers and about 16% for double precision numbers. For reliable floating-point division, Berger encoded operands yields hardware cost-effectiveness: about 45% for single precision numbers and about 36% for double precision numbers

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 4 )