By Topic

Innovative structures for CMOS combinational gates synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Buonanno, G. ; Dipartimento di Elettronica, Politecnico di Milano, Italy ; Sciuto, D. ; Stefanelli, R.

Design of multiple outputs CMOS combinational gates is studied. Two techniques for minimization of multiple output functions at the switching level are introduced. These techniques are based on innovative transistor interconnection structures named Delta and Lambda networks. The two techniques can be combined together to obtain further area reductions. Different synthesis algorithms are discussed, from exhaustive enumeration to branch and bound to heuristic techniques allowing to speed up the synthesis process. Simulation results for synthesis are introduced to compare the different algorithms. Design examples are also provided. Electrical simulations show that the dynamic behavior of such structures is comparable to the traditional static or domino implementations (obviously the new and traditional structures have the same static behavior)

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 4 )