Cart (Loading....) | Create Account
Close category search window

Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tewksbury, T.L., III ; Analog Devices Inc., Wilmington, MA, USA ; Hae-Seung Lee

MOSFETs subjected to large-signal gate-source voltage pulses on microsecond to millisecond time scales exhibit transient threshold voltage shifts which relax over considerably longer periods of time. This problem is important in high-accuracy analog circuits where it can cause errors at the 12 b level and above. In this paper, transient threshold voltage shifts are characterized with respect to their dependence on stress amplitude and duration, relaxation time, gate bias, substrate bias, drain voltage, temperature, and channel width and length. In contrast to previous studies, threshold voltage shifts are measured at time and voltage scales relevant to analog circuits, and are shown to occur even when the effects of Fowler-Nordheim tunneling, avalanche injection, hot carriers, trap generation, self-heating, mobile ions, and dipolar polarizations are absent. A new model is proposed in which channel charge carriers tunnel to and from near-interface oxide traps by one of three parallel pathways. Transitions may occur elastically, by direct tunneling between the silicon band edges and an oxide trap, or inelastically, by tunneling in conjunction with a thermal transition in the insulator or at the Si-SiO2 interface. Simulations based on this model show excellent agreement with experimental results. The threshold voltage shifts are also shown to be correlated with 1/f noise, in corroboration of the tunneling model. Techniques for the minimization and modeling of errors in circuits are presented

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 3 )

Date of Publication:

Mar 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.