By Topic

Regularized image reconstruction using SVD and a neural network method for matrix inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. J. Steriti ; Dept. of Electr. Eng., Massachusetts Univ., Lowell, MA, USA ; M. A. Fiddy

Two methods of matrix inversion are compared for use in an image reconstruction algorithm. The first is based on energy minimization using a Hopfield neural network. This is compared with the inverse obtained using singular value decomposition (SVD). It is shown for a practical example that the neural network provides a more useful and robust matrix inverse

Published in:

IEEE Transactions on Signal Processing  (Volume:41 ,  Issue: 10 )