Cart (Loading....) | Create Account
Close category search window

Energy separation in signal modulations with application to speech analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

An efficient solution to the fundamental problem of estimating the time-varying amplitude envelope and instantaneous frequency of a real-valued signal that has both an AM and FM structure is provided. Nonlinear combinations of instantaneous signal outputs from the energy operator are used to separate its output energy product into its AM and FM components. The theoretical analysis is done first for continuous-time signals. Then several efficient algorithms are developed and compared for estimating the amplitude envelope and instantaneous frequency of discrete-time AM-FM signals. These energy separation algorithms are used to search for modulations in speech resonances, which are modeled using AM-FM signals to account for time-varying amplitude envelopes and instantaneous frequencies. The experimental results provide evidence that bandpass-filtered speech signals around speech formants contain amplitude and frequency modulations within a pitch period

Published in:

Signal Processing, IEEE Transactions on  (Volume:41 ,  Issue: 10 )

Date of Publication:

Oct 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.