By Topic

Large join optimization on a hypercube multiprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin, E.T. ; IBM Corp., San Jose, CA, USA ; Omiecinski, E.R. ; Yalamanchili, S.

Optimizing large join queries that consist of many joins has been recognized as NP-hard. Most of the previous work focuses on a uniprocessor environment. In a multiprocessor, the location of each join adds another dimension to the complexity of the problem. In this paper, we examine the feasibility of exploiting the inherent parallelism in optimizing large join queries on a hypercube multiprocessor. This includes using the multiprocessor not only to answer the large join query but also to optimize it. We propose an algorithm to estimate the cost of a parallel large join plan. Three heuristics are provided for generating an initial solution, which is further optimized by an iterative local-improvement method. The entire process of parallel query optimization and execution is simulated on an Intel iPSC/2 hypercube machine. Our experimental results show that the performance of each heuristic depends on the characteristics of the query

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 2 )