By Topic

Performance analysis of a concurrent file reorganization algorithm for record clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Omiecinski, Edward ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Lee, L. ; Scheuermann, P.

Presents a simulation-based performance analysis of a concurrent file reorganization algorithm. We examine the effect on throughput of (a) buffer size, (b) degree of reorganization, (c) write probability of transactions, (d) multiprogramming level, and (e) degree of clustered transactions. The problem of file reorganization that we consider involves altering the placement of records on pages of a secondary storage device. In addition, we want this reorganization to be done in place, i.e. using the file's original storage space for the newly reorganized file. Our approach is appropriate for a non-in-place reorganization as well. The motivation for such a physical change, i.e. record clustering, is to improve the database system's performance, i.e. minimizing the number of page accesses made in answering a set of queries. There are numerous record clustering algorithms, but they usually do not solve the entire problem, i.e., they do not specify how to efficiently reorganize the file to reflect the clustering assignment that they determine. In previous work, we have presented an algorithm that is a companion to general record clustering algorithms, i.e. it actually transforms the file. In this work we show through simulation that our algorithm, when run concurrently with user transactions, provides an acceptable level of overall database system performance

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 2 )