By Topic

Satisfaction of input and output encoding constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saldanha, A. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Villa, T. ; Brayton, R.K. ; Sangiovanni-Vincentelli, A.L.

Three encoding problems relevant to the synthesis of digital circuits are input, output, and state encoding. Several encoding strategies have been proposed in the past that decompose the encoding problem into a two step process of constraint generation and constraint satisfaction. The latter requires the assignment of binary codes to symbols subject to the satisfaction of constraints on the codes. This paper focuses on the constraint satisfaction problem. We prove that constraint satisfaction is NP-complete. We develop a framework for the satisfaction of both input and output encoding constraints, and describe a polynomial time (in the number of symbols to be encoded) algorithm to check for the existence of a solution for a set of input and output constraints. An exact algorithm to determine the minimum number of encoding bits required to satisfy all the given constraints is provided, and a heuristic algorithm is also described. The application of this framework to a variety of encoding problems with different cost functions is illustrated. Experimental results on standard benchmarks are given for the exact and heuristic algorithms

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:13 ,  Issue: 5 )