By Topic

A Euclidean distance transform using grayscale morphology decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, C.T. ; Dept. of Electr. Eng., Texas Univ., Arlington, TX, USA ; Mitchell, O.R.

A fast and exact Euclidean distance transformation using decomposed grayscale morphological operators is presented. Applied on a binary image, a distance transformation assigns each object pixel a value that corresponds to the shortest distance between the object pixel and the background pixels. It is shown that the large structuring element required for the Euclidean distance transformation can be easily decomposed into 3×3 windows. This is possible because the square of the Euclidean distance matrix changes uniformly both in the vertical and horizontal directions. A simple extension for a 3D Euclidean distance transformation is discussed. A fast distance transform for serial computers is also presented. Acting like thinning algorithms, the version for serial computers focuses operations only on the potential changing pixels and propagates from the boundary of objects, significantly reducing execution time. Nonsquare pixels can also be used in this algorithm. An example application, shape filtering using arbitrary sized circular dilation and erosion, is discussed. Rotation-invariant basic morphological operations can be done using this example application

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 4 )