By Topic

Integrated 3-D analysis and analysis-guided synthesis of flight image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Sull ; Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA ; N. Ahuja

This paper is concerned with three-dimensional (3D) analysis, and analysis-guided syntheses, of images showing 3-D motion of an observer relative to a scene. There are two objectives of the paper. First, it presents an approach to recovering 3D motion and structure parameters from multiple cues present in a monocular image sequence, such as point features, optical flow, regions, lines, texture gradient, and vanishing line. Second, it introduces the notion that the cues that contribute the most to 3-D interpretation are also the ones that would yield the most realistic synthesis, thus suggesting an approach to analysis guided 3-D representation. For concreteness, the paper focuses on flight image sequences of a planar, textured surface. The integration of information in these diverse cues is carried out using optimization. For reliable estimation, a sequential batch method is used to compute motion and structure. Synthesis is done by using (i) image attributes extracted from the image sequence, and (ii) simple, artificial image attributes which are not present in the original images. For display, real and/or artificial attributes are shown as a monocular or a binocular sequence. Performance evaluation is done through experiments with one synthetic sequence, and two real image sequences digitized from a commercially available video tape and a laserdisc. The attribute based representation of these sequences compressed their sizes by 502 and 367. The visualization sequence appears very similar to the original sequence in informal, monocular as well as stereo viewing on a workstation monitor

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 4 )