By Topic

Hypothesis testing: a framework for analyzing and optimizing Hough transform performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Princen, J. ; Telecom Australia Res. Labs., Clayton, Vic., Australia ; Illingworth, J. ; Kittler, J.

In this paper a formal, quantitative approach to designing optimum Hough transform (HT) algorithms is proposed. This approach takes the view that a HT is a hypothesis testing method. Each sample in the HT array implements a test to determine whether a curve with the given parameters fits the edge point data. This view allows the performance of HT algorithms to be quantified. The power function, which gives the probability of rejection as a function of the underlying parametric distribution of data points, is shown to be the fundamentally important characteristic of HT behaviour. Attempting to make the power function narrow is a formal approach to optimizing HT performance. To illustrate how this framework is useful the particular problem of line detection is discussed in detail. It is shown that the hypothesis testing framework leads to a redefinition of the HT in which the values are a measure of the distribution of points around a curve rather than the number of points on a curve. This change dramatically improves the sensitivity of the method to small structures. The solution to many HT design problems can be posed within the framework, including optimal quantizations and optimum sampling of the parameter space. In this paper the authors consider the design of optimum I-D filters, which can be used to sharpen the peak structure in parameter space. Results on several real images illustrate the improvements obtained

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 4 )