By Topic

Maisie: a language for the design of efficient discrete-event simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. L. Bagrodia ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Wen-Toh Liao

Maisie is a C-based discrete-event simulation language that was designed to cleanly separate a simulation model from the underlying algorithm (sequential or parallel) used for the execution of the model. With few modifications, a Maisie program may be executed by using a sequential simulation algorithm, a parallel conservative algorithm or a parallel optimistic algorithm. The language constructs allow the run-time system to implement optimizations that reduce recomputation and state saving overheads for optimistic simulations and synchronization overheads for conservative implementations. This paper presents the Maisie simulation language, describes a set of optimizations, and illustrates the use of the language in the design of efficient parallel simulations

Published in:

IEEE Transactions on Software Engineering  (Volume:20 ,  Issue: 4 )