By Topic

Nonuniform transmission line codirectional couplers for hybrid MIMIC and superconductive applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Uysal ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; C. W. Turner ; J. Watkins

A new design approach for thin-film codirectional quadrature couplers and their applications is described. An in-depth analysis and semi-empirical design curves are presented for these couplers. Forward-wave coupling is achieved by making use of the difference between even- and odd-mode phase velocities. Modified nonuniform codirectional couplers with a dummy channel for continuously decreasing or increasing taper and employing wiggly, serpentined and smooth coupled edges have been designed and tested. It is found that a wiggly coupler can achieve a 50% length reduction compared to a smooth-edge coupler. A further 60% length reduction compared to a wiggly coupler is achieved by a serpentine coupler. Coupler performance for wiggly and serpentined configurations is computed by choosing a realizable phase velocity function for a given coupler length. Either constant 90° or -90° phase shift is possible with these couplers giving significant design flexibility in some applications. The results for a Ku-band Σ-Δ magic-T circuit employing a 0 dB wiggly coupler and a -3 dB smooth-edge coupler are also presented in the paper

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:42 ,  Issue: 3 )