By Topic

A unified negative-binomial distribution for yield analysis of defect-tolerant circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Koren, I. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA ; Koren, Z. ; Stepper, C.H.

It has been recognized that the yield of fault-tolerant VLSI circuits depends on the size of the fault clusters. Consequently, models for yield analysis have been proposed for large-area clustering and small-area clustering, based on the two-parameter negative-binomial distribution. The addition of a new parameter, the block size, to the two existing parameters of the fault distribution is proposed. This parameter allows the unification of the existing models and, at the same time, adds a whole range of medium-size clustering models. Thus, the flexibility in choosing the appropriate yield model is increased. Methods for estimating the newly defined block size are presented and the approach is validated through simulation and empirical data

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 6 )