By Topic

Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stauffer, P.R. ; Dept. of Radiat. Oncology, California Univ., San Francisco, CA, USA ; Sneed, P.K. ; Hashemi, H. ; Phillips, T.L.

Interstitial techniques for hyperthermia therapy of cancer continue to evolve in response to requirements for better localization and control over heating of deep seated tissues. Magnetic induction heating of ferromagnetic implants is one of several available techniques for producing interstitial hyperthermia, using thermal conduction to redistribute heat within an array of controlled temperature "hot sources." This report describes seven induction heating coil designs that can be used for producing strong magnetic fields around ferromagnetic seed implants located in different sites in the body. The effect of coil design on the extent and uniformity of the magnetic field is characterized, and appropriate electrostatic shield designs for minimizing electric field coupling to the patient are described. Advantages and disadvantages of each coil type are discussed in terms of the radiated fields, coil efficiency, and ease of use, and appropriate applications are given for each design. This armamentarium of induction coils provides the ability to customize magnetic field distributions for improved coupling of energy into ferromagnetic implant arrays located at any depth or orientation in the body. Proper selection of heating coil configuration should simplify patient setup, improve the safety of patient treatments, and pave the way for future applications of interstitial heating in sites that were previously untreatable.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:41 ,  Issue: 1 )