Cart (Loading....) | Create Account
Close category search window

Least squares methods for H control-oriented system identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Helmicki, A.J. ; Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH, USA ; Jacobson, C.A. ; Nett, C.N.

A series of system identification algorithms that yield identified models which are compatible with current robust controller design methodologies is presented. These algorithms are applicable to a broad class of stable, distributed, linear, shift-invariant plants. The a priori information necessary for their application consists of a lower bound on the relative stability of the unknown plant, an upper bound on a certain gain associated with the unknown plant, and an upper bound on the noise level. The a posteriori data information consists of a finite number of corrugated point frequency response estimates of the unknown plant. The extent to which certain standard Hilbert-space or least-squares method are applicable to the H system identification problem considered is examined. Results are established that connect the H2 error of the least-squares methods to the H error needed for control-oriented system identification

Published in:

Automatic Control, IEEE Transactions on  (Volume:38 ,  Issue: 5 )

Date of Publication:

May 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.