Cart (Loading....) | Create Account
Close category search window

Radiometric CCD camera calibration and noise estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Healey, G.E. ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; Kondepudy, R.

Changes in measured image irradiance have many physical causes and are the primary cue for several visual processes, such as edge detection and shape from shading. Using physical models for charged-coupled device (CCD) video cameras and material reflectance, we quantify the variation in digitized pixel values that is due to sensor noise and scene variation. This analysis forms the basis of algorithms for camera characterization and calibration and for scene description. Specifically, algorithms are developed for estimating the parameters of camera noise and for calibrating a camera to remove the effects of fixed pattern nonuniformity and spatial variation in dark current. While these techniques have many potential uses, we describe in particular how they can be used to estimate a measure of scene variation. This measure is independent of image irradiance and can be used to identify a surface from a single sensor band over a range of situations. Experimental results confirm that the models presented in this paper are useful for modeling the different sources of variation in real images obtained from video cameras

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 3 )

Date of Publication:

Mar 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.