Cart (Loading....) | Create Account
Close category search window
 

Multi-primitive hierarchical (MPH) stereo analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marapane, S.B. ; Comput. Vision & Robotics Res. Lab., Tennessee Univ., Knoxville, TN, USA ; Trivedi, M.M.

This paper develops and demonstrates a new computational framework for an accurate, robust, and efficient stereo approach. In multi-primitive hierarchical (MPH) computational model, stereo analysis is performed in multiple stages, incorporating multiple primitives, utilizing a hierarchical control strategy. The MPH stereo system consists of three integrated subsystems: region-based analysis module; linear edge segment-based analysis module; and edgel-based stereo analysis module. Results of stereo analysis at higher levels of the hierarchy are used for guidance at the lower levels. The MPH stereo system does not overly rely on one type of primitive and therefore will reliably work on a wide range of scenes. The MPH stereo analysis results in the generation of several disparity maps of multiple abstraction. Disparity maps generated at each level can be fused to obtain an accurate and fine resolution disparity map. The MPH approach also provides the capability to selectively analyze image regions with varying detail. This provides the means for adaptively extracting range information of only sufficient resolution. Thus, a stereo system that utilizes primitives of different abstraction and a multilevel hierarchical computational strategy will be superior to a single-level, single-primitive system. Extensive experimentation is carried out on a wide array of scenes of varying complexity from two application domains to systematically evaluate the validity and performance of the MPH framework. The MPH stereo system is able to analyze images in most cases with 85%~100% matching accuracy in under a minute of processing time and yield depth values typically within ±2% of the actual depth

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 3 )

Date of Publication:

Mar 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.