By Topic

A neural net algorithm for multidimensional minimum relative-entropy spectral analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinhua Zhuang ; Dept. of Electr. & Comput. Eng., Missouri Univ., Columbia, MO, USA ; Yan Huang ; Yu, F.A. ; Peng Zhang

A neural net algorithm is presented to solve the general 1-D or multidimensional minimum relative-entropy spectral analysis. The problem is formulated as a primal constrained optimization and is reduced to solving an initial value problem of differential equation of Lyapunov type. The initial value problem of Lyapunov system comprises the basis of the neural net algorithm. Experiments with simulated data convincingly showed that the algorithm did provide the multidimensional minimum relative-entropy spectral estimator with the autocorrelation matching property with computational efficiency

Published in:

Signal Processing, IEEE Transactions on  (Volume:42 ,  Issue: 2 )