By Topic

Scaling parallel programs for multiprocessors: methodology and examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. P. Singh ; Comput. Syst. Lab., Stanford Univ., CA, USA ; J. L. Hennessy ; A. Gupta

Models for the constraints under which an application should be scaled, including constant problem-size scaling, memory-constrained scaling, and time-constrained scaling, are reviewed. A realistic method is described that scales all relevant parameters under considerations imposed by the application domain. This method leads to different conclusions about the effectiveness and design of large multiprocessors than the naive practice of scaling only the data set size. The primary example application is a simulation of galaxies using the Barnes-Hut hierarchical N-body method.<>

Published in:

Computer  (Volume:26 ,  Issue: 7 )