Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

FlowMap: an optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cong, J. ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Ding, Y.

The field programmable gate-array (FPGA) has become an important technology in VLSI ASIC designs. In the past few years, a number of heuristic algorithms have been proposed for technology mapping in lookup-table (LUT) based FPGA designs, but none of them guarantees optimal solutions for general Boolean networks and little is known about how far their solutions are away from the optimal ones. This paper presents a theoretical breakthrough which shows that the LUT-based FPGA technology mapping problem for depth minimization can be solved optimally in polynomial time. A key step in our algorithm is to compute a minimum height K-feasible cut in a network, which is solved optimally in polynomial time based on network flow computation. Our algorithm also effectively minimizes the number of LUT's by maximizing the volume of each cut and by several post-processing operations. Based on these results, we have implemented an LUT-based FPGA mapping package called FlowMap. We have tested FlowMap on a large set of benchmark examples and compared it with other LUT-based FPGA mapping algorithms for delay optimization, including Chortle-d, MIS-pga-delay, and DAG-Map. FlowMap reduces the LUT network depth by up to 7% and reduces the number of LUT's by up to 50% compared to the three previous methods

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:13 ,  Issue: 1 )