By Topic

Boundary-constrained morphological skeleton minimization and skeleton reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tun-Wen Pai ; Dept. of Electr. Eng., Duke Univ., Durham, NC, USA ; J. H. L. Hansen

A new algorithm for minimizing a morphological skeleton entitled boundary-constrained skeleton minimization (BCSM), as well as a new algorithm for reconstructing an original image from its minimized skeletal structure termed boundary-constrained skeleton reconstruction (BCSR), are proposed. The new algorithms are shown to reduce data storage requirements from (N+1) binary images represented as separate skeleton subsets with their corresponding indices, to 2 binary images composed of a binary morphological skeleton and its corresponding morphological boundary structure. In addition to a reduction in memory storage, BCSM and BCSR result in substantial savings in computational complexity. The proposed algorithms are evaluated in the context of image analysis and coding, and their performance is compared to previous algorithms proposed by Serra (1982, 1988) and by Maragos and Schafer (1986). Sample evaluations indicate a greater than 22-fold savings in computational requirements and 11-fold reduction in memory requirements

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 2 )