By Topic

Part II: 3-D object recognition and shape estimation from image contours using B-splines, shape invariant matching, and neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin-Yinn Wang ; Dept. of Inf. Sci., Chung Cheng Inst. of Technol., Taoyuan, Taiwan ; F. S. Cohen

For pt. I, see ibid., p.1-12 (1994). This paper is the second part of a 3-D object recognition and shape estimation system that identifies particular objects by recognizing the special markings (text, symbols, drawings, etc.) on their surfaces. The shape of the object is identified from the image curves using B-spline curve modeling as described in Part I, as well as a binocular stereo imaging system. This is achieved by first estimating the 3-D control points from the corresponding curves in each image in the stereo imaging system. From the 3-D control points, the 3-D object curves are generated, and these are subsequently used for estimating the 3-D surface parameters. A Bayesian framework is used for classifying the image into one of c possible surfaces based on the extracted 3-D object curves. This is complemented by a neural network (NN) that recognizes the surface as a particular object (e.g., a Pepsi can versus a peanut butter jar), by reading the text/markings on the surface. To reduce the amount of training the NN has to undergo for recognition, the object curves are “unwarped” into planar curves before the matching process. This eliminates the need for templates that are surface shape dependent and results in a planar curve that might be a rotated, translated, and scaled version of the template. Hence, for the matching process we need to use measures that are invariant to these transformations. One such measure is the Fourier descriptors (FD) derived from the control points associated with the unwarped parent curves. The approach is tried on a variety of images of real objects and appears to hold great promise

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 1 )