By Topic

Experimental and 2D simulation study of the single-event burnout in N-channel power MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
F. Roubaud ; Centre d'Electron. de Montpellier, Univ. Montpellier II, France ; C. Dachs ; J. -M. Palau ; J. Gasiot
more authors

The use of the 2D simulator MEDICI as a tool for single event burnout (SEB) comprehension is investigated. Simulation results are compared to experimental currents induced in an N channel power MOSFET by the ions from a 252Cf source. Current measurements have been carried out using a specially designed circuit. Simulations make it possible to analyze separately the effects of the ion impact and the electrical environment parameters on the SEB phenomenon. Burnout sensitivity is found to be increased by increasing supply voltage and ion linear energy transfer (LET), and by decreasing load charge. These electrical tendencies are confirmed by experiments. Burnout sensitivity is also found to be sensitive to the ion impact position. The current shape variations for given electrical parameters can be related to LET or ion impact position changes. However, some experimental current shapes are not reproduced by simulations

Published in:

IEEE Transactions on Nuclear Science  (Volume:40 ,  Issue: 6 )