By Topic

DEKF system for crowding estimation by a multiple-model approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cravino, F. ; Dept. of Biophys. & Electron. Eng., Genoa Univ. ; Dellucca, M. ; Tesei, A.

A distributed extended Kalman filter (DEKF) network devoted to real-time crowding estimation for surveillance in complex scenes is presented. Estimation is carried out by extracting a set of significant features from sequences of images. Feature values are associated by virtual sensors with the estimated number of people using nonlinear models obtained in an off-line training phase. Different models are used, depending on the positions and dimensions of the crowded subareas detected in each image

Published in:

Electronics Letters  (Volume:30 ,  Issue: 5 )