By Topic

A Gaussian synapse circuit for analog VLSI neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joongho Choi ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Sheu, B.J. ; Chang, J.C.-F.

Back-propagation neural networks with Gaussian function synapses have better convergence property over those with linear-multiplying synapses. In digital simulation, more computing time is spent on Gaussian function evaluation. We present a compact analog synapse cell which is not biased in the subthreshold region for fully-parallel operation. This cell can approximate a Gaussian function with accuracy around 98% in the ideal case. Device mismatch induced by fabrication process will cause some degradation to this approximation. The Gaussian synapse cell can also be used in unsupervised learning. Programmability of the proposed Gaussian synapse cell is achieved by changing the stored synapse weight W/sub ji/, the reference current and the sizes of transistors in the differential pair.<>

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:2 ,  Issue: 1 )