By Topic

Using processor affinity in loop scheduling on shared-memory multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Markatos, E.P. ; Dept. of Comput. Sci., Rochester Univ., NY, USA ; LeBlanc, T.J.

Loops are the single largest source of parallelism in many applications. One way to exploit this parallelism is to execute loop iterations in parallel on different processors. Previous approaches to loop scheduling attempted to achieve the minimum completion time by distributing the workload as evenly as possible while minimizing the number of synchronization operations required. The authors consider a third dimension to the problem of loop scheduling on shared-memory multiprocessors: communication overhead caused by accesses to nonlocal data. They show that traditional algorithms for loop scheduling, which ignore the location of data when assigning iterations to processors, incur a significant performance penalty on modern shared-memory multiprocessors. They propose a new loop scheduling algorithm that attempts to simultaneously balance the workload, minimize synchronization, and co-locate loop iterations with the necessary data. They compare the performance of this new algorithm to other known algorithms by using five representative kernel programs on a Silicon Graphics multiprocessor workstation, a BBN Butterfly, a Sequent Symmetry, and a KSR-1, and show that the new algorithm offers substantial performance improvements, up to a factor of 4 in some cases. The authors conclude that loop scheduling algorithms for shared-memory multiprocessors cannot afford to ignore the location of data, particularly in light of the increasing disparity between processor and memory speeds

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 4 )