By Topic

A progressive universal noiseless coder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Effros, M. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Chou, P.A. ; Riskin, E.A. ; Gray, R.M.

The authors combine pruned tree-structured vector quantization (pruned TSVQ) with Itoh's (1987) universal noiseless coder. By combining pruned TSVQ with universal noiseless coding, they benefit from the “successive approximation” capabilities of TSVQ, thereby allowing progressive transmission of images, while retaining the ability to noiselessly encode images of unknown statistics in a provably asymptotically optimal fashion. Noiseless compression results are comparable to Ziv-Lempel and arithmetic coding for both images and finely quantized Gaussian sources

Published in:

Information Theory, IEEE Transactions on  (Volume:40 ,  Issue: 1 )