By Topic

A parallel algorithm for reconfiguring a multibutterfly network with faulty switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goldberg, A.V. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Maggs, B.M. ; Plotkin, Serge A.

This paper describes a deterministic algorithm for reconfiguring a multibutterfly network with faulty switches. Unlike previous reconfiguration algorithms, the algorithm is performed entirely by the network, without the aid of any off-line computation, even though many of the switches may be faulty. The algorithm reconfigures an N-input multibutterfly network in O(logN) time. After reconfiguration, the multibutterfly can tolerate f worst-case faults and still route any permutation between some set of N-O(f) inputs and N-O(f) outputs in O(log N) time

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 3 )