By Topic

Fast hardware-based algorithms for elementary function computations using rectangular multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wong, W.F. ; Dept. of Inf. Syst. & Comput. Sci., Nat. Univ. of Singapore, Singapore ; Gogo, E.

As the name suggests, elementary functions play a vital role in scientific computations. Yet due to their inherent nature, they are a considerable computing task by themselves. Not surprisingly, since the dawn of computing, the goal of speeding up elementary function computation has been pursued. This paper describes new hardware based algorithms for the computation of the common elementary functions, namely division, logarithm, reciprocal square root, arc tangent, sine and cosine. These algorithms exploit microscopic parallelism using specialized hardware with heavy use of truncation based on detailed accuracy analysis. The contribution of this work lies in the fact that these algorithms are very fast and yet are accurate. If we let the time to perform an IEEE Standard 754 double precision floating point multiplication be τ×, our algorithms to achieve roughly 3.68τ×,4.56τ×, 5.25τ×, 3.69τ×, 7.06τ×, and 6.5τ×, for division, logarithm, square root, exponential, are tangent and complex exponential (sine and cosine) respectively. The trade-off is the need for tables and some specialized hardware. The total amount of tables required, however, is less than 128 Kbytes. We discuss the hardware, algorithmic and accuracy aspects of these algorithms

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 3 )