By Topic

Analysis of infinite arrays of microstrip-fed dipoles printed on protruding dielectric substrates and covered with a dielectric radome

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bayard, J.-P.R. ; Dept. of Electr. & Electron. Eng., California State Univ., Sacramento, CA, USA

A method for analyzing infinite arrays of antennas printed on both sides of substrates protruding from a ground plane and covered with a dielectric radome is described. Using the equivalence principle, the array unit cell is decomposed into homogeneous regions where the fields are expressed as Floquet summations, and an inhomogeneous cavity region where the fields can be found by a combination of the method of moments and modal analysis. The approach is rigorous in the sense that the combined effects of the radiating element and feed geometry printed on opposite sides of a protruding substrate are taken into account. The method is quite general, capable of modeling any antenna elements with substrate currents that are perpendicular and/or parallel to the ground plane. In addition, both the radiating and scattering/receiving modes of operation are treated in the analysis. The method is used to calculate the active element impedance of an infinite array of dipoles transmission line-coupled to microstrip feeds. Examples of numerical results are presented for various scan conditions and the effects of a near-field dielectric radome are demonstrated

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:42 ,  Issue: 1 )